Flume Sink的目的是从Flume Channel中获取数据然后输出到存储或者其他Flume Source中。Flume Agent启动的时候,它会为每一个Sink都启动一个SinkRunner的对象,SinkRunner.start()方法会启动一个新的线程去管理每一个Sink的生命周期。每一个Sink需要实现start()、Stop()和process()方法。你可以在start方法中去初始化Sink的参数和状态,在stop方法中清理Sink的资源。最关键的是process方法,它将处理从Channel中拿出来的数据。另外如果Sink有一些配置则需要实现Configurable接口。
由于Flume官方提供的Sink往往不能满足要求,所以我们自定义Sink来实现定制化的需求,这里以ElasticSearch为例。在Sink中实现所以文档的简单的Insert功能。例子使用Flume 1.7。
1. 编写代码
首先新建类ElasticSearchSink类继承AbstractSink类,由于还希望有自定义的Sink的配置,所以实现Configurable接口。
public class ElasticSearchSink extends AbstractSink implements Configurable
ElasticSearch的IP以及索引的名称可以配置在配置文件里面,配置文件就是使用flume的conf文件。你可以重写Configurable的configure的方法去获取配置,代码如下:
@Override public void configure(Context context) { esHost = context.getString("es_host"); esIndex = context.getString("es_index"); }
注意里面的配置项“es_host”和“es_index”在conf配置文件中的语法:
agent.sinks = sink1agent.sinks.sink1.type = nick.test.flume.ElasticSearchSinkagent.sinks.sink1.es_host = 192.168.50.213agent.sinks.sink1.es_index = vehicle_event_test
接下来就是实现process方法,在这个方法中需要获取channel,因为数据都是从channel中获得的。获取消息之前,需要先获取一个Channel是事务,处理完成之后需要commit和关闭这个事务。这样才能让channel知道这个消息已经消费完成,它可以从它的内部队列中删除这个消息。如果消费失败,需要重新消费的话,可以rollback这个事务。事务的引入是flume对消息可靠性保证的关键。
process方法需要返回一个Status类型的枚举,Ready和BackOff。如果你到了一个消息,并正常处理了,需要使用Ready。如果拿到的消息是null,则可以返回BackOff。所谓BackOff(失效补偿)就是当sink获取不到 消息的时候, Sink的PollingRunner 线程需要等待一段backoff时间,等channel中的数据得到了补偿再来进行pollling 操作。
完整的代码如下:
public class ElasticSearchSink extends AbstractSink implements Configurable{ private String esHost; private String esIndex; private TransportClient client; @Override public Status process() throws EventDeliveryException { Status status = null; // Start transaction Channel ch = getChannel(); Transaction txn = ch.getTransaction(); txn.begin(); try { Event event = ch.take(); if (event != null) { String body = new String(event.getBody(), "UTF-8"); BulkRequestBuilder bulkRequest = client.prepareBulk(); Listjsons = new ArrayList (); JSONObject obj = JSONObject.parseObject(body); String vehicleId = obj.getString("vehicle_id"); String eventBeginCode = obj.getString("event_begin_code"); String eventBeginTime = obj.getString("event_begin_time"); //doc id in index String id = (vehicleId + "_" + eventBeginTime + "_" + eventBeginCode).trim(); JSONObject json = new JSONObject(); json.put("vehicle_id", vehicleId); bulkRequest.add(client.prepareIndex(esIndex, esIndex).setSource(json)); BulkResponse bulkResponse = bulkRequest.get(); status = Status.READY; } else { status = Status.BACKOFF; } txn.commit(); } catch (Throwable t) { txn.rollback(); t.getCause().printStackTrace(); status = Status.BACKOFF; } finally { txn.close(); } return status; } @Override public void configure(Context context) { esHost = context.getString("es_host"); esIndex = context.getString("es_index"); } @Override public synchronized void stop() { super.stop(); } @Override public synchronized void start() { try { Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build(); client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(esHost), 9300)); super.start(); System.out.println("finish start"); } catch (Exception ex) { ex.printStackTrace(); } }}
2. 打包、配置和运行
由于是自定义的Sink,所以需要打成jar包,然后copy到flume的lib文件夹下。然后配置agent的配置文件,最后启动flume就可以了。本例中,我使用了kafkasource、memorychannel和自定义的sink,完整的配置文件如下:
agent.sources = source1agent.channels = channel1agent.sinks = sink1agent.sources.source1.type = org.apache.flume.source.kafka.KafkaSourceagent.sources.source1.channels = channel1agent.sources.source1.batchSize = 1agent.sources.source1.batchDurationMillis = 2000agent.sources.source1.kafka.bootstrap.servers = 192.168.50.116:9092,192.168.50.117:9092,192.168.50.118:9092,192.168.50.226:9092agent.sources.source1.kafka.topics = iov-vehicle-eventagent.sources.source1.kafka.consumer.group.id = flume-vehicle-event-nickagent.sinks.sink1.type = nick.test.flume.ElasticSearchSinkagent.sinks.sink1.es_host = 192.168.50.213agent.sinks.sink1.es_index = vehicle_event_testagent.sinks.sink1.channel = channel1agent.channels.channel1.type = memoryagent.channels.channel1.capacity = 1000